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ABSTRACT 

The universal 2-cover of the P-geometry related to the Baby Monster spo- 

radic simple group BM is shown to admit a non-split extension 34s71 .BM 

as a flag-transitive automorphism group. This new geometry completes 

the list of flag-transitive P-geometries. 

1. In troduct ion  

In this paper we construct a new flag-transitive P-geometry and prove its simple 

connectedness. This answers the last question being open in the classification 

project of the flag-transitive P-geometries (cf. [8, 9, 14, 15]). The constructed 

geometry closes the list of the flag-transitive P-geometries which is now known 

to consist of eight examples: 9(M22), 9(3.  M22), 9(M23), 9(Co2), 9(323. Co2), 
9(J4), 9(BM) and 9(3437'. BM). 

The basic definitions can be found in [3]. P-geometries are the geometries 

belonging to a connected string diagram whose non-empty edges are all projective 

planes over GF(2), except the rightmost edge which stands for the geometry of 
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edges and vertices of the Petersen graph, with the natural incidence relation. In 

what follows all the considered geometries are flag-transitive, by assumption or 

by construction. So, sometimes we simply write "geometries" meaning them all 

flag-transitive. If ~ is a geometry over a type set A, and i E A, then ~i denotes 

the set of elements of type i in the geometry. For an element z E ~, its residue 

is denoted by res(x). Thus, res(x) i is the set of elements of type i incident to x. 

The new P-geometry will be constructed as a 2-cover (actually, the universal 

2-cover) of the rank 5 P-geometry ~(BM)  related to Fischer's Baby Monster 

sporadic simple group BM.  The latter P-geometry was first constructed in [7], 

and its simple connectedness was proved in [8]. In the present paper we compute 

the universal 2-cover of ~(BM).  In general, the universal 2-cover of a geometry 

is not necessarily itself a geometry. Nevertheless, by means of some standard 

arguments relying on the shape of the diagrmn and the structure of residues (see 

[1]), one can prove that the 2-cover of a flag-transitive P-geometry is always a 

geometry. 

MAIN THEOREM: Let ~ = ~ (BM)  and ~ be its universal 2-cover. Then the 

group K of the deck transformations of ~ with respect to the mapping ~ , 

is elementary abelian of order 34371. In particular, ~ admits a ttag-~ransitive 

automorphism group which is a non-split extension 34371 • BM. The factor group 

B M  of the latter group acts irreducibly on K. 

Remark: In fact, B M  is the only flag-transitive automorphism group of ~(BM),  

and hence 34371 • B M  is the only flag-transitive automorphism group of ~. It 

means that G is the only flag-transitive factor of ~, so that no further flag- 

transitive P-geometry can be obtained as a factor of ~. 

In its basic features the approach of this paper resembles that of [15]. However, 

in the present paper the proof goes much faster. In the construction part we 

use computations with the character table of BM,  which are now feasible, and 

even comfortable due to new Version 3.1 of GAP. On the other hand, when 

proving that the automorphism group of ~ is an abelian extension of BM,  and 

bounding the rank of the kernel, we use simple geometric arguments in the spirit 

of presheaves [13], but in the characteristic which is not natural for the geometry. 

These considerations are based on the module structure of the kernels arising in 

various subgeometries of G(BM). The relevant information was established in 

[10, 151. 
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Special words must be said about the relation between this paper and [17]. 

In the construction part,  there is a key Proposition 3.1. By this proposition, a 

certain 2-subgroup Q5 of B M  acts fixed-points-freely on an explicitely defined 

GF(3)-module of B M .  The natural way to check this basic property is via 

computations with the character table. However, these computations require a 

precise information about the conjugacy classes of B M  within Qs. This informa- 

tion is not available to us even now, so one of the authors applied to R.A.Wilson, 

who had just constructed astonishing matrices giving a representation of B M  of 

dimension 4370 over GF(2).  The request was to check the property of Q5 com- 

putationally, via these matrices. Such a check has been performed during last 

months. When it was more or less completed, a trick (see Corollary 3.11) was 

found, letting substitute Q5 by another subgroup, more convenient for the com- 

putations with characters. Here we give this alternative proof of the existence of 

a non-trivial 2-cover of ~(BM) .  

2. Prel iminaries-1 

The necessary information about the Baby Monster group B M  and its geometry 

will be given in two portions. In this short section we collect very few facts 

about the parabolic subgroups of G = B M  corresponding to its action on G = 

~ (B M) ,  which ave needed for our construction of a nontrivial 2-cover of ~. All 

the subgroups arising in this way are well-known. The best reference is [4]. More 

details of residues and subgeometries of G will be given in Section 4. 

The group G contains all elementavy M)elian subgroup E -- 25, such that 

Na(E)  ~- [2a°].Ls(2) and g a ( E )  induces on E its full automorphism group 

L5(2). It was shown in [9] that the set of subgroups of G, conjugate to nontrivial 

subgroups of E,  constitutes a geometry with the following diagram 

1 2 3 4 D *  5 
0 0 O 0 0 

where the type of ml element is given by its rank, mid the rightmost edge stands 

for the dual of the Petersen graph geometry. It nleans that ~ is a rank 5 P-  

geometry (see [9]). The Borel subgroup B in G is a 2-group of order 2 *° (index 2 in 

the Sylow 2-subgroup). Let Pi, i = 1, ..., 5, be the minimal parabolic subgroups. 

Then P1 to Pa have the shape [239].$3, while P5 is a 2-group of order 241. Now 

let Pij = (Pi ,Pj ) , I  _< i < j < 5, be the rank 2 parabolic subgroups. The 
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structure of Pij is basically determined by the diagram, since Pij acts on the 

corresponding rank 2 residue of type {i,j}.  The only case to be specified is that 

P4,s/O2(P4,5) ~- $5, since $5 (not As) is the flag-transitive group induced on the 

corresponding residue, isomorphic to the (dual) Petersen geometry. 

Finally, let Hi, i = 1 , . . . ,  5, denote the i-th maximal parabolic subgroup, i.e., 

the stabilizer of the element xi of type i from the chosen maximal flag of ~. 

Without loss of generality we may assume that xi is a subgroup of order 2 i in E 

(so that  E = xs). Since xi's form a flag we have that xi < xj whenever i < j .  In 

these terms Pi is the stabilizer of all xj ,  j ¢ i. 

The structures of Hi's are given by: 

//1 ~ 2 ~+22 • Co2, 

//2 ~ [2s2].($3 x Aut M22), 

Hs ~ [2ss].(Ls(2) x $5), 

/'/4 ~ [2s4].(L4(2) × 2), 

/'/5 ~ [2s°].Ls(2). 

Let Qi = 02(Hi), i = 1 , . . .  ,5. Unless i = 4, Qi is the kernel of the action of Hi 

on res(xi). The group Q4 is twice larger than the corresponding kernel, since it 

also involves the action on the two elements of type 5 incident to x4. Particularly, 

it means that Q5 _< Q4. 

The following result is a consequence of the information in [4]. 

LEMMA 2.1: NG(Qi) = Hi. 

3. A non-tr iv ia l  2-cover  

Let ~ = {Pij}l<_i<j<_5 be the amalgam of the rank 2 parabolic subgroups related 

to the action of G = B M  on ~ = ~(BM). Whenever T' is embedded in a group, 

it defines for that group a transitive chamber system with the diagram as above. 

By a standard argument this chamber system must be a geometry. Moreover, this 

new P-geometry has the same universal 2-cover, as ~ does, and the universal 2- 

cover itself can be obtained in this way. In this section we embed T' in a certain 

group and prove that the subgroup, generated by T', is not isomorphic to G. 

Clearly, it implies that  ~ is not 2-simply connected. 

It is well-known (see [4]) that G has a subgroup L of the shape 2 -2E6(2).2. 

This subgroup is the centralizer of a 2A-involution from G, according to the 

notation of [4]. Let U0 be the nontrivia/1-dimensional module for L over GF(3).  
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Then L I ~ 2-2E~(2) acts trivially oll U0. Let U be the G-module induced 

from U0. The 3-part of the Schur multiplier of 2E6(2) has order 3. Moreover, 

every outer automorphism of order 2 of 2E6(2) acts on that 3-part nontrivially. 

This can be seen from the 27-dimensional irreducible representation of 3.2E6(2) 

over GF(4), because the outer involution carl be represented in this case by the 

field automorphism. In particular, the second cohomology group H2L(Uo) is non- 

trivial of order 3. Now by Eckmann-Shapiro lemma (see [2], Shapiro lemma), 

also H~(U) has order 3. It metals that there is a (unique) non-split extension 

= U . G .  It is the group into which we are going to embed P. Since the 

extension is non-split, such an embedding can not generate a subgroup isomorphic 

to G = BM.  Notice that the group G is much larger than the group 34371 • B M  

from Main Theorem. In particular, P nmst generate a proper subgroup of G. 

Our construction is based on the following key fact. 

PROPOSITION 3.1: The group Q5 fixes no nontrivial vector in U, i.e., Cu(Qs) = 

O. 

Before proving this proposition we show how it yields an embedding of P into 

G. First of all, since Q5 _< Q4 we have the following 

COROLLARY 3.2: Cu(Q4) = O. 

Let /}  be a 2-subgroup in G which is a co,nplement to U in the full preimage 

of B with respect to the natural ho,nomo11)hisnl of G onto G. Then, clearly,/} 

maps onto B isomorphically. Let (~i, i = 1 , . . . ,  5, denote the preimage of Qi in 

/}. Let /~5 = NG(Qb) and /~4 = N&((~4). Since Cu(Qb) = Cu(Q4) -- 0, the 

Frattini argument implies that /~a and /~5 are isomorphic to their images /-/4 

and //5, respectively. The latter two subgroups contain all minimal parabolic 

subgroups Pi. Clearly,/~4 N/~5 maps onto H4 N/-/5, so that we can define/5i as 

the preimage of Pi in a suitable subgroup/~i, i = 4, 5. Moreover, every rank two 

parabolic subgroup Pij, except P4,5, is contained in at least one of subgroups Ha 

and / /5 .  Hence we can formulate 

LEMMA 3.3: Unless {i , j}  = {4,5},/bij = (/5i,15j) is isomorphic to Pij. 

We are going to prove that the stone statement is valid in the case/54,5 as well. 

Let ~ be the amalgam {2 × S3,Ds} arising in the action of $5 on the Petersen 

geometry. The following fact will be useful. 
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LEMMA 3.4: Whenever embedded hlto a group F ~ 3 ~.$5 with trivial action of 

Ao ,~ F/Os(F) on Os(F), the area/gain Q generates a subgroup So. 

Proof.. Since the 3-part of the Schur multiplier of A0 is trivial, F has a normal 

subgroup As. Consider the factor group of F over this A0. It is easy to see that 

the whole amalgam Q maps onto a group of order 2, so the claim follows. II 

LEMMA3.5: /34,5 is isomorphic to P4,o. 

Vroo/~ Let Q = O~(P4,5) a n d / / =  O2(P4). Let 1~ and h be the corresponding 

preimages in/~.  Note that the image of {P4,Ps} in P4,5/Q is just the amalgam 

Q. In particular, IR : QI = 2. Since R contains Qo, Cu(R) = 0. It follows that 

an element from R \ Q inverts all elements of Cv(Q). It means that P4,5 has only 

1-dimensional factors within Cu(Q), i.e., the subgroup A0 of P4,s/Q -~ So acts 

trivially on cv(o). Now, the group/54,0/0 is contained in NG((2)/Q -~ 3".So, 
where 3" stands for the image of Cv(Q). Since the image of/54,0 in/54,0/Q is 

generated by the same mnalgam Q, it nmst be isomorphic to S0 in view of Lemma 

3.4. | 

Lemmas 3.3 and 3.5 provide an embedding of the amalgam 7:' = {Pij}l<_i<j<5 
-~ {/5ij}l<i<j<5 into (~. As G is a non-split extension, the closure ({/5ij}l<i<j<5) 

is not isomorphic to G = BM. We have shown that the following proposition, 

constituting the main result of the section, follows from Proposition 3.1. 

PROPOSITION 3.6: The geometry ~(BM) is not 2-simply connected. 

The proof of Proposition 3.1 will be given in a sequence of lemmas. We start 

with some general comments on calculation of centralizers in a module induced 

from a non-trivial 1-dimensional module. Namely, we specialize for our particular 

situation the Mackey decomposition (see [5], Mackey theorem). Lemmas 3.7 and 

3.8 are apparently well-known; yet we prove them for the sake of completeness. 

Let F be a group and X, Y be subgroups of F.  Let W0 be a non-trivial 1- 

dimensional module of X over some field, and W the F-module induced from 

W0. We are interested in the dimension of Cw(Y). Let X0 be the kernel of X 

acting on W0. Since W is the induced nmdule, it is a direct sum @ieT"Wi of 

1-dimensional subspaces indexed by the cosets from T = FIX.  The group F 

naturally permutes the subspaces Wi, and if we put i0 to be the coset 1. X,  then 

Wio is isomorphic to W0 as an X-module. For every i = 9X let Xi = X g be 
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the stabilizer, and Xo,i -- X~ be the centralizer of Wi. Choose an orbit T of 

Y on 7" and let WT = ~)ieT Wi. Then dim CwT(Y) = 1, or 0, depending on 

whether, for i E T, Y N Xi is contained in Xo,i, or is not. We will say that T 

is non-twisted and twisted in the respective cases. Clearly, Cw(Y)  is the direct 

sum of 1-dimensional subspaces CwT (Y) over all non-twisted Y-orbits T. 

We have proved the following 

LEMMA 3.7: la2 the above notation, dim Cw(Y)  is equal to the number of non- 

twisted orbits of Y on 7". 

Let us also give a character theoretical interpretation of this lemma. Notice 

that the above definition does not depend on the characteristic of the ground 

field, but only on the pair (X, X0). Let l~g0 be the non-trivial 1-dimensional X- 

module over (2 with the same kernel X0, and W be the F-module induced from 

l;~r0. Then Lemma 3.7 gives us that dim Cw(Y)  -- dim C~v(Y ). On the other 

hand, the latter dimension is simply the number of trivial subconstituents of the 

character of I)V, restricted to Y. We formulate this as 

LEMMA 3.8: In the above notation, let Xo be the d~aracter of Wo, and X = Xvo 

the induced character. Then dim Cw(Y)  = (X[Y , 1v). 

Due to Lemma 3.8 we can work with the usual character table of G = BM. In 

what follows if W is a module induced fi'om a 1-dimensional module, then by the 

character of W we always meaal the complex character related with W as above. 

Now let us turn to the proof of Proposition 3.1. Let X0 be the only 1- 

dimensional non-trivial character of L and X the corresponding induced character 

of G. The character X was determined in [6]. 

LEMMA 3.9: The character X, associated as above with the action of G on U, is 

the sum of the irreducible characters Xu, X7 and Xlr, according to the notation 

of [4]. 

According to Lemma 3.8, since the character X is known, the natural way to 

compute dim Cu(Qs) would be via computation of the mean value of X on Qs. 

Unfortunately, we do not know the intersections of the conjugacy classes of G 

with Qs. So, we use a somewhat tricky way to obtain the desired result. 

Let us substitute Qs by another subgroup, namely, by R = 02(H1 N Hs). 

Clearly, R contains both Q5 and Q1- Let us show that Cu(Qs) ~ 0 would imply 

Cu(R) ~ O. We will use the following 
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LEMMA 3.10: Let F = Ls(2) a~2d E = O2(P) -- 24, where P is the stabilizer of 

a point o[ the projective geometry associated with F. Then, whenever W is an 

F-module induced from a 1-dimensional module of a subgroup T < F, one has 

Cw(E)  # O. 

Proof." If  W is a permutational  module, then Cw(E)  # O, since even Cw(F)  # 

0. Hence we can assume that  W is induced from a nontrivial 1-dimensional 

module of T. Let To be the kernel of that  1-dimensional representation of T. 

Suppose to the contrary that  Cw(E)  = O. Then, by Lemma 3.7, every orbit of 

E on the cosets of T is twisted, that  is E ~ A T :g To for every x E F.  

The list of maximal subgroups of Ls(2) [4] consists of the maximal parabolic 

subgroups and the group F~I. Let M be a maximal subgroup of F containing 

T. Since F~I is a 2'-group, conjugates of E intersect it trivially. It follows that  

M ~ F~I. Hence M is a maxinaai parabolic subgroup, i.e. the stabilizer of a 

subspace V0 of the basic 5-dimensional space V acted on by F.  Recall that  P is 

the stabilizer of a point, that  is a 1-subspace Z < V. It implies that  E is the 

group of all transvections with center Z. 

Suppose first that  V0 is a 1-subspace, i.e., without loss of generaiity we may 

assume that  V0 = Z and, hence, E = 02(M). If T acts on E irreducibly, then, 

clearly, each of E N T and E N To is either E,  or 0. Since T/To is cyclic, it implies 

E n T = E A To. If the action of T on E is reducible, then T stabilizes a proper 

subspace of V of dimension more than 1, which means that  T is contained as 

well in a maximal  parabolic subgroup of a different type. 

Suppose now that  V0 is a hyperplane ill V. Then there is x E F,  such that  

Z* 2~ V0. In particular, E * n M = 1, a contradiction. 

Next, suppose V0 is a 3-dimensional subspace. Choose x such that  Z z ~ V0. 

Then E* N M is a group of order 2. By the above condition, T contains this 

group, as well as all its conjugates in M. In particular, O2(M) _< T and in the 

factor group M/O2(M) ---- $3 x L3(2) the image of T covers the direct factor 

$3. Since a 3-element from this direct factor acts on 02(M) # fixed-point-freely, 

02(M) <_ To. Let us now choose x, such that  Z* _< V0. Then E * _< M and the 

image cf E * in M = M/O2(M) belongs to the subgroup D -~ L3(2) _< 2t~ and 

has rank 2. It implies that  for A = /~* ,  X = ~' N D, X0 = T0 N D we have the 

same condition as for E,  T and To: A d n X ~ Xo for every d E D. Applying 

the above two arguments (for V0 a 1-space, and a hyperplane) to D ~ L3(2), we 
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establish that D does not contain such a pair X, X0. 

Finally, let us suppose that V0 is a 2-subspace. Let V' be a complement of V0 

in V, and let D ~ Ls(2) be the group stabilizing V' and acting trivially on V0. 

If we take z such that Z x _< V', then E x N M _< D. Take once again X = T N D 

and X0 = To N D. Then for the subgroups A = E ~ N D, X and X0 of D we have 

once again the condition: A d N X 2~ X0 for every d 6 D. As above, this forces a 

contradiction. | 

COROLLARY 3 . 1 h  If  Cu(Qs) # 0 then Cu(R) # O. 

Proof." Suppose W = Cu(Qs) is nontriviai. By the Mackey decomposition 

(see the discussion before Lemma 3.7), W is a direct sum of 1-dimensional Qs- 

modules, corresponding to the non-twisted Qs-orbits on the cosets of L in G. 

In particular, as a Hs/Qs-module, W is a direct sum of modules, induced from 

1-dimensional modules of certain subgroups of Hs/Qs. The image of H1 N/-/5 

in Hs/Qs ~- La(2) is (up to the obvious duality) a point stabilizer, hence the 

statement follows from Lemma 3.10. | 

We will prove Cu(R) = 0 in two steps. First we determine C = Cu(Q1 ) and 

then determine the fixed space of R in C (notice that Q1 is normal in R). 

LEMMA 3.12: C = Cu(Q1) has dimension 51175. 

Proo~ By Lemma 3.8, dim C = 1/IQ11 • ~,zeQ~ x(x). As it was said in Section 

2, H1 is the well-known maximal subgroup 21+22. Co2, which is the centralizer of 

a 2B-involution from G = B M  (notation for the conjugacy classes as in [4]). In 

particular, QI is an extraspecial group of order 223. The 22-dimensional GF(2)- 

module, arising on top of Q1, is a section of A/2A, where A is the Leech lattice. 

The orbits of Co2 in this module are well-known and their lengths can be read, 

say, from Table 1 in [16]. Finally, we obtain the following lengths of the orbits 

of H1 acting on QI # by conjugation: 1, 2. 2300, 2. 46575, 2. 476928, 2. 1619200 

and 2 • 2049300. Moreover, we can specify that the 4th and 5th orbits consist 

of elements of order 4, while all others consist of involutions. Clearly, the orbit 

1 belongs to the class 2B of G. Let x be the element of G fixed by/ ' /1. There 

are exactly 2. 46575 other elements in G1, at distance 2 from x in the incidence 

graph of ~. These elements form an orbit under the action of Hi and, to each 

of these elements, there is associated a 2B-involution, which clearly belongs to 
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Q1. Hence the orbit 2. 46575 is contained in 2B as well. Now if x belongs to the 

4th or 5th orbit, then x 2 is the central involution in/-/1. Hence we can compute 

the lengths of the corresponding classes of G, multiplying 953856 and 3238400 by 

the number of 2B-involutions. In this way we obtain that the 4th and 5th orbits 

belong to 4A and 4B, respectively. Now a short program written in GAP checks 

that the above mentioned sum takes an integer value (namely, 51175--which is 

what we had to prove) only if the 2nd and 6th orbits belong to the classes 2A 

and 2D, respectively. | 

Considered as a module for H1/Ql ~ Co2, the space C is a direct sum of 

modules induced from 1-dimensional modules of certain subgroups K1 , . . . ,  K,  of 

H1/Q1. We are going to determine the subgroups Ki and to specify the involved 

1-dimensional modules. We already know the degree 51175 of the character of 

1"11/Q1 on C. Now the list of maximal subgroups of Co2 [16] leaves very few 

possibilities for the modules involved. In particular the required information 

would follow from the value of the character of C on, say, any class of involutions 

of/'/1/Q1. Unfortunately, these values are not available and once more we should 

use a detour. Namely, we first determine the orbits of/-/1 on the cosets of L, 

equivalently, on the conjugacy class 2A of G. Then we check that three of those 

orbits contain non-twisted Ql-orbits and finally use the value from Lemma 3.12 

to prove that we have encountered already all such orbits. 

Recall that H1 is the centralizer of a 2B-involution, while L is the centralizer 

of a 2A-involution. Using GAP, it is easy to obtain that for a fixed 2B-involution 

x, there are exactly 

(O1) 4600 y E2A, such that xy E2A; 

(02) 3643200 y E2A, such that xy E2D; 

(03) 190771200 y E2A, such that xy E4A; 

(04) 3730636800 y E2A, such that xy E4D; 

(05) 9646899200 y E2A, such that xy E6A; 

and that any 2A-involution belongs to one of the above subsets. 

The first set Oi is already known to be an orbit, since these are the 2A- 

involutions from Q1. The stabilizer in H1 of a representative of O1 has shape 

[2251.v (2).2. 
Let y belongs to 05. Then y E Hi, but y ~ Qi. To which class of HI/QI ~- Co2 

does the image of y belong? Because of the cardinMity, it must be either 2a, or 2b 

(we use small letters in order to distinguish classes of Co2 from those of BM). Let 
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a be the number of y's in 02 mapping to a fixed 2a-element, while b the number 

of y's mapping to a fixed 2b-elenmrtt. Then a .  56925 + b- 1024650 = 3643200. 

This has two solutions: a = 10, b = 3 and a = 64, b = 0. Let z be a 2a-involution 

from H1/QI ~- Cos. Then X = CHI/Qt(x) "~ 21+S.Spe(2) does not stabilize a 

nontrivial vector from E = QI/Z(Q1) -~ 222 (of. Table 1 from [16]). It implies 

that X acts nontrivially on E/CE(x)  (isomorphic to [E, x] as an X-module). 

Since X involves Spe(2), it is easy to see that dim E/CE(:r) > 6 and hence 

10~ : CO~(Y)[ > 64, whenever y maps to a 2a-element. It means that the second 

variant holds, and also that 02 is an orbit for H1 and the stabilizer in/ '/1 of an 

element y E 02 has shape [2~6].Sp6(2). 

Consider now O3. GAP gives the value 200 for the number of pairs (z, y) 

E(2A,2B), such that z = xy is a fixed element from 4A. Each subgroup (z, y) 

Ds contains two such pairs, hence there are 100 subgroups. We have already seen 

that z E 02(Ca(t)),  where t = z 2 E2B. It follows from, say, Table 1 from [16], 

that the centralizer of z has shape [222].Aut HS. Since H S  has no subgroup of 

index less than 100, it is straightforward that there is exactly one orbit of triples 

(x, y, z) E(2A,2B,4A) with z = xy, mad the stabilizer of a particular triple has 

shape [222].Aut M22. 

For a fixed z E4D (in 6A) there are exactly 2 (respectively, 3) pairs (x, y) E(2A, 

2B) with xy = z, so that already (z) acts on these pairs transitively. Hence/ '/1 

is transitive on both 04 and 05. It is now easy to establish the shapes of the 

corresponding stabilizers. They are [216].Sp6(2) and 2.U6(2).2. We formulate this 

as following 

LEMMA 3.13: The group H1 ~ 21+22 • Coz, acting on 2A, has exactly 5 or- 

bits and the representative stabilizers are as follows: [222].Ue(2).2, [226].Sp6(2), 

[222].Aut M22, [216].Spe(2 ) and 2.Ue(2).2. 

Let us now go on with deternfination of the module Cu(Q1). By Lemma 3.7, 

it is sufficient to deternfine all non-twisted orbits of QI on 2A. By Lemma 3.12, 

the total number of non-twisted Ql-orbits is 51175. Clearly, orbits of Q1 within 

one orbit of H1 are either all twisted, or all non-twisted. We claim that the 

non-twisted orbits are exactly those from Ox, 03 and 05. 

Let i E O1. Then H1 N Ca(i) ~ [22~].Us(2).2 covers the whole maximal 

parabolic subgroup 21+2°.U6(2).2 in Ca(i)/(i) ----2Es(2).2. Since Q1 N Ca(i) <_ 

02(H1 f3 Ca(i)), it implies that O1 is twisted with respect to H~, but consists of 
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non-twisted orbits with respect to Q1. Since (Ht f3 CG(i))Q1 has index 2300 in 

//1, we obtain a component of dimension 2300 in Cu(Q1). 

Now let i E 05. Let x be the central involution of H1. Since ix E6A in this 

case, neither i, nor x belong to F = H1 f3 Ca(i) ~ 2.U8(2).2. Since i • F,  F 

maps into an involution centralizer in Ca(i)/(i). Checking the orders, we see 

that it must be the same subgroup 21+2°.U6(2).2. Since x ~ F, and since the 

subgroup U6(2) of Co2 fixes a unique vector in the module Q~/(x) (cf. Table 1 

[16]), F covers the subgroup U6(2).2 of Cos. In particular, it involves an outer 

automorphism of U6(2). We obtain the same conclusion: O5 is twisted with 

respect to H1, but consists of non-twisted orbits with respect to Q1. Once again, 

FQ1 has index 2300 in H1. This gives another component of dimension 2300 in 

Cu(Q~ ). 
Finally, let i 6 O2. Then F = H1 f3 Ca(i) has shape [222].Aut M22. In this 

case ix e4A. Hence F does not contain i, but its image in CG(i)/(i) ~2 E6(2).2 

is contained in a centralizer of involution. Checking the orders of the involution 

centralizers in 2Es(2).2, we obtain once more that it must be 21+2°.Us(2).2. Now, 

Ue(2) does not involve Aut M22. Hence, this orbit, as well, is twisted with respect 

to /'/1, but consists of non-twisted orbits with respect to Q1. This gives the 

remaining 46575 = IH1 : FQI 1 dimensions of Cv(Q1). We have proved the 

following 

LEMMA 3.14: As a module for H1/Q1, C = Cu(Q1) is a direct sum of induced 

modules of dimensions 2300, 2300 and 46575, all three induced from non-triviM 

1-dimensionM modules. 

LEMMA 3.15: Cv(R) = O. 

Proof: It is now a simple computation, since the library of GAP contains the 

fusions of the character tables of the subgroups 21+4+6.L4(2) (arising as the image 

of H1 fl Hs), Us(2).2 (of index 2300) and 21° : Aut M22 (of index 46575) into the 

character table of H1/Q1 ~- Co2. | 

Proposition 3.1 follows from Lemmas 3.15 and 3.11. 

4. Prel iminaries-2 

In this section we collect further facts about G = G(BM), namely, we describe 

the universal 2-covers of the residual P-geometries of G and relevant 1-covers of 
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the symplectic subgeometries of ~. 

The residual P-geometries of G of rank 3 mid 4 are isomorphic, respectively, to 

~(M22) and ~(Co2) (see [9]). The universal 2-covers of these P-geometries were 

determined in [15, 14]. 

LEMMA 4.1: (1) The only proper cover of~(M22) is its (3-fold) universal cover 

~(3- M~2) with the automorphism group 3. Aut M22. 

(2) The geometry ~(Co~) is simply connected. It has exactly one proper 

flag-transitive 2-cover, which is its universal 2-cover G(323 • Co2) with the au- 

tomorphism group isomorphic to the non-split extension 32s • Co2, where the 

Co2-module given by 32s can be obtained as a submodttle of codimension 1 in 

A/3A, A the Leech lattice. 

As it was already mentioned, ~ is 3-simply connected [8]. It implies that in 

a proper flag-transitive 2-cover of G every rank 3 residual P-geometry must be 

isomorphic to ~(3 • M22), and consequently every rank 4 residual P-geometry 

is isomorphic to ~(32s • Co2). Let ~ 1)e the universal 2-cover of G, and (~ its 

automorphism group which is the full preimage in Aut ~ of G = BM. In view of 

Proposition 3.6, ~ is a proper 2-cover of ~. 

The geometry ~ contains a family of rank 4 (including types 1 to 4 of the above 

diagram) subgeometries, which are the classical symplectic spaces over GF(2). 

The stabilizer in G of a subgeometry S is a subgroup 29+lS.Sps(2), which induces 

on S its full automorphism group Sps(2 ). The diagram of S is Ca: 

1 2 3 4 
O 0 {I 11 

For each element x E G 4, there is exactly one symplectic subgeometry Sx 

containing x. As it follows from the diagraans, Sz contains all elements of types 1, 

2, 3 incident to z. The general information about subgeometries in P-geometries 

can be found in Section 3 of [11]. 

Let F be a flag of S of type {1,2}. Then resa(F) ~ ~(M22), while tess(F) is 

isomorphic to the generalized quadrangle of order (2, 2), having $6 - Sp4(2 ) as 

its automorphism group. Let t ~ be a flag in ~, which maps onto F,  and ,~ the 

connected component of the preinaage of S, containing F. As it was said above, 

resz(_~) ~ ~(3. M~).  It means that res~(.~) is the triple cover (actually, 1-cover) 
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of the generalized qudrangle for $6. This edge is denoted by ,, 

diagram of g is C4: 

1 2 3 4 
0 0 u [ J  

Isr. J. Math. 

so that the 

All such 1-covers of symplectic geometries over GF(2) (for any rank) were 

determined in [10], where they were called the symplectic type T-geometries. 

For each value of rank there is exactly one such geometry. We formulate the 

result from [10] in case of rank 4. 

LEMMA 4.2: Let S be the rank 4 symplectic geometry over GF(2) and ,~ its 

flag-transitive 1-cover, having" the diag'rmn C4. Then S is uniquely determined 

and its only flag-transitive automorphisnl group is isomorphic to the non-split 

extension 335 • Sps(2). 

Clearly, the subgeometries S inherit the property of the symplectic subgeome- 

tries of ~ that every element of type 4 belongs to exactly one subgeometry. We 

state this as 

LEMMA 4.3: The universal 2-cover ~ of ~ = ~(BM) contains a family S T  of 

rank 4 symplectic type T-subgeometries, such that every element x E ~4 belongs 

to exactly one subgeometry S~ E ST.  A11 elements of types 1, 2, 3 incident to x 

belong to S,.  The stabilizer o r s  E S T  induces on S the group 335 • Sps(2 ). 

A further property of the subgeometries from ST will be stated in the next 

section (cf. Lemma 5.1). 

5. Bounding the kernel 

In this section, in order to simplify the notation, we denote by ~ the universal 

2-cover of ~(BM),  rather than ~(BM) itself. The only exception is made for the 

main statement of the section, in which the notation agrees with that of the rest 

of the paper. Similarly, in this section G denotes not BM,  but its full preimage 

in Aut ~. 

Let K be the kernel of the natural homomorphism of G onto BM,  i.e., it 

is the group of deck transformations of ~ with respect to the natural mapping 

--, ~(BM). By Lemma 4.1(1) the stabilizer//2 of an element x E ~2 has the 

structure [2a2].(Ss x 3. Aut M22). It means that the intersection K,  = K n/ /2  is 



Vol. 82, 1993 FLAG-TRANSITIVE P-GEOMETRY 355 

of order 3. Since ~ is 3-simply connected, K is generated by the subgroups K~, 

for all x • G 2. 

By Lemma 4.3, if x ranges within a subgeometry S • ST,  the corresponding 

subgroups K~ generate an abelian group 335. Let Ks denote this subgroup. Then 

the group (or, rather, Sps(2)-module) Ks has the following property, proved in 

[10]. 

LEMMA 5.1: Let S E S T  and x • ,.q4 Tlle~2 the 35 subgroups Ky, y E res(x) 2, 

span Ks.  

For y • ~ of type # 2, let g y  be defined as <Kt: x • res(y)2). 

LEMMA 5.2: (1) For y • ~1, the subgroup Ky is abelian of rank 23. 

(2) Let y • ~ be of type 3, 4, or 5. Then Ky is abellan. The subgroups 

K~, x • res(y) 2, are linearly independent in Ky. In particular, the rank of K~ is 

equal to 7, 35 or 155, if  the type of y is 3, 4 or 5, respectlvely. 

Proof." The statement (1) follows from Lemma 4.1(2). For y of type 3 and 4, 

the statement (2) follows from Lemma 5.1. Suppose y is of type 5. Consider 

two elements xl,  x2 of type 2, incident to y. Since res(y) is a projective space, 

there is an element u of type 4, incident to y, xl and x2. By the above, K~ 1 and 

Kz2 commute. To prove linear independence, consider the action of Q = O2(G~) 

on K U. Since Q is the kernel of the action of Gy on res(y), Q stabilizes each 

Kx,x  • res(y) 2. Let z • res(y) 4 ruld S = Sz. By Lemma 5.1, Q stabilizes 

Ks.  Comparing the orders of Q (i.e., 2 s°) and 02(Gs) (i.e., 29+16) we see that 

Q induces on Ky a group of order at least 25 > 2. Since Gy acts on res(y) 2 

primitively, the subgroups K~, x • res(y) 2, are linearly independent. II 

LEMMA 5.3: Let x e ~1, y • res(x)i for i = 3,4,5. Then rank(Kz f3 Ky) = 

3, 7, 15, respectively. 

Proof: The lower bounds are evident, since these numbers are just the numbers 

of elements in res(x, y)2 in the respective cases. To obtain the upper bounds con- 

sider the action o f H  = Gzf3G~ on Ky. Since H contains O2(Gy), an argument as 

in the preceding lemma shows that the irreducible components of Ky with respect 

to action of H arise from the orbits of H on res(y) 2. Consequently, we obtain 

the following decompositions of K~'s: 3+4, 7+28 and 15+140, respectively. For 

i = 4, 5, the statement of lemma now follows from Lemma 5.2(1). Let i = 3 and 
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assume Ky < K~. Choose yl • res(y) 5. Since res(y) 2 C res(yl)2, we conclude 

that  K~ n Ky, has dimension larger than 7 or 15 as previously established, a 

contradiction. II 

LEMMA 5.4: Let z • ~4 and (Yl, Y~ } = res(z) 5. Then I(~, n Ku~ = K~. 

Proof: By definition, K~ C_ Ky~ f3 Ky 2. Let y = Yl or Y2. Consider the action 

of H = Gz f3 G~ on K~. As above, we can obtain the decomposition 35+120 of 

K~. Hence Ky t f3 K~2 = K~, unless Ky~ = Ky2, which is a contradiction. I 

LEMMA 5.5: 111 the situation of Lemma 5.4, let x • res(z) 1 . Then Kx <_ 

(Kv,,Ku:). 

Proof: Let U = K , n ( K y , , K ~ , ) .  Then rank(U) >_ rank(K~, n K ~ ) + r a n k ( K y ,  n 

K . )  - r a n k ( K ~ ,  n K~ ,  n K . )  = 15 + 15 - 7 = 23 = r a n k ( K . ) .  | 

LEMMA 5.6: Let v • G ~ m2d zl, z2 • res(v) 1. Then K~ and K~ 2 commute. 

Proof: Let z = zl or z2. Since Gz induces on K ,  the group Co2, G, AG~ induces 

on K ,  the group 21° : Aut M2~. Finally, the group G,~ f3 G,2, which has index 

2 in G,  f3 G~, induces on K ,  a group, having section 2 l° : M22. Now, it is clear 

that  K,,  with respect to the action of K,~ n K,2, has irreducible components of 

dimensions 1 and 22. The component of dimension 1 is Kv, which is common for 

Kz~ and Kz~. Therefore, in order to prove the lemma, we need only to find an 

element in Kz~ \ K~, commuting with K~ 2 . 

Consider an element u • res(v) 4 and let {y,,y~_} = res(u) s. By Lemmas 

5.2(2) and 5.4, K~ is in the center of (Ky,,Ky2). By Lemma 5.5, the latter 

group contains Kz2, so that  K~ A K~, comnmtes with Kz 2. By Lemma 5.3, 

r ank(K~ f3 K~) = 7, so the result follows. | 

LEMMA 5.7: Let y E ~5, UI(y) = (Kxlx • res(y) ~) and U2(y) = (Ky ,Kz l z  • 

6~, {y, z} = res(,) ~ for some v e ~4). Then V,(~) = V~(~). 

Remark: By Lemma 5.6 and the axioms of projective space, U 1 (y) is abelian. 

Proof: (i) Ul(y) <_ U2(y): Suppose x E res(y) 1. Take v e res(y,x)* and let 

{y, z} = res(v) s. By Lemma 5.5, we have Kx < (Ky, I(~) < V2(y). 
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(ii) U2(y) < UI(y): Let v • res(y) 4 and {y,z} = res(v) s. Let a • res(z) 2. 

Then, in the residue of z, v is a hyperplane, while a is a line. Hence a and 

v have a point x • res(v) 1 in common. Clearly, z is incident to y. We have 

K,  < K~ < UI(y). Since by definition Kz is generated by all such K~, we have 

u2(v) _< u,(~), t 

Let us consider the graph F, defined on the set ~5, where two elements are 

adjazent if and only if they are incident to a common element of type 4, i.e., 

V(F) = ~5 and E(F)  = ~4. Let Fi(y) denote the set of vertices at distance i 

from a vertex y. Put  Vi(y) = (K,  Iz • v ( r ) , d ( z , y )  < i). Then Vo(y) = K v and 

V~(y) = UI(y) = U2(y) by Lenmm 5.7. 

LEMMA 5.8: rank(Vl(y)/Vo(y)) < 248. 

Proof." By Lemma 5.7, VI(y) is generated by 31 subgroups K z , z  • res(y) 1, 

each having dimension 23 and intersecting Vo(y) by a subspace of dimension 15 

(Lemma 5.3). Hence rank(Vl(y)/Vo(y)) < 3 1 . 8  = 248. II 

LEMMA 5.9: Let z • r l (y ) .  Then rank(Vl(z)/(Vo(y),Vo(z))) <_ 128. 

Proof: Let v • ~4 be incident to both  y and z. The group 111 (z) is generated by 

the subgroups K ,  for x • res(z) 1 . If x is incident to v, then K ,  < (Vo(y), Vo(z)) 

by Lemma 5.5. There are exactly 16 elements x, which are not adjacent to v, 

each of them giving contribution of rank at most 8 (indeed, by Lemma 5.2 (1) 

the rank of K~ equals 23, while the rank of K~ fq Kz is 15 by Lemma 5.3). I 

COROLLARY 5.10: IfV2(y) is abelian, then rank(V2(y)/Vl(y) ) < 31.128 = 3968. 

LEMMA 5.11: Let y E ~5, u e res(y) 3, {Vl,V2,V3} = res(y,u)  4 and, for i = 

1,2, 3, let {y, zi } = res(ol)5. Then Yl (y) = (Co (y), Vo (zl), go (z2), Vo (z3)). 

Proof." In the residue of y the elements vl, v2 and v3 are three hyperplanes having 

a subspace of codimension 2 in common. Therefore, every point x C res(y) 1 is 

incident to zi for some i. By Lemma 5.5, K~ <_ (Vo(y), V0(zi)/. | 

LEMMA 5.12: Y3(y) = Y2(y). 

Proof: Let z E F2(y). Then we can find an element u E ~3, which is incident 

to both  y and z. Let {Vl,V2,V3} = res(z,u)* and {z, zi} = res(vi) s for i = 1,2,3. 
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Since res(u) 4,5 is the dual Petersen geometry, mad since the Petersen graph has 

diameter 2, one has Va(z) _< (Vo(z),Vo(zl),Vo(z2),Vo(z3)) <_ V2(y). The first 

containment is forced by Lemma 5.11. | 

COROLLARY 5.13: For every y • ~5 one has K = V2(y). 

Proof: Follows from Lemma 5.12 and connectedness of F. I 

LEMMA 5.14: K is abelian. 

Proof." By Corollary 5.13, K = V2(y). Let us show that V0(y) is in the center 

of K. Let z E Qs, d(y,z) < 2 and a e ~5 be such that d(a,y) < 1 and d(a,z) < 

1. By the remark after Lemma 5.7, VI(a) is abelian. Hence Vo(y) and Vo(z) 

commute. 

We have proven that V0(y) is in the center of g .  Since g = (Vo(y) : y • gs), 

K is abelian. | 

Now the main result of the section. Recall that here we return to the general 

notation of the paper. 

PROCLAIM 5.15: Let Q = Q(BM), ~ be its universal 2-cover and K be the 

group of deck transformation of Q with respect to the mapping ~ --~ Q. Then K 

is elementary abelian 3-group of rank at most 4371. 

Proof: By Lemma 5.14, K is abelian. By Lemmas 5.2(2), 5.8 and Corollary 

5.10, rank(K) _< 155 + 248 + 3968 = 4371. | 

6. The end of  the proof  

In the last section we complete the proof of Main Theorem. Let ~ = G(BM), 

be its universal 2-cover, and G be the full preinlage in Aut~ of the group 

G = BM.  Let K be the group of deck transformations of ~ with respect to the 

mapping ~ --* ~. Then K is the kernel of the natural homomorphism of G onto 

G. 

So far we proved that K # 1 (Proposition 3.6) and that it is elementary 

abelian 3-group of rank at most 4371 (Proposition 5.15). Since G acts on 

flag-transitively, it remains to prove that: 

(a) The G-module K is irreducible of dimension exactly 4371. 
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(b) The extension G = K.G is non-split. 

Let us start with (a). 

Consider the action on K of the subgroup H -~ 21+22.Co2 _< G. Let Q = O2(H) 

and z be the central involution of H. Clearly, G acts on K non-trivially, and 

consequently H acts on K faithfully. It is well-known that,  over any field of odd 

characteristic, an extraspecial group 2 l+~s has exactly one irreducible faithful 

module, and that that module has dimension 2 s. In our case it means that 

dim [K, z] >_ 2048. In Section 3, proof of Lemma 3.12 (where H, Q appeared under 

the names H1, Q1 ) we saw that Q contains a non-central element z ~ which is G- 

conjugate to z. If CK(z) = CK(Q) then CK(z') > CK(z), a contradiction since 

z and z ~ are G-conjugate. Therefore, K contains an irreducible H-submodule 

K0, such that [z, K0] = 1 and [Q, K0] ¢ 1. Since Q is normal in H and induces 

on K0 the elementary abelian 2-group Q/(z), Clifford's theorem implies that 

dim K0 is at least the minimal length of orbit of H/Q ~- Co2 on the set of 

hyperplanes of Q/(z). Since the Co2-module Q/(z) is self-dual, Table 1 from 

[16] shows that dim K0 >__ 2300. Finally, H is the stabilizer of a certain element 

x E G1. In particular, H stabilizes the 23-dimensional subspace K~, where 

belongs to the preimage of x in ~ and K~ is defined as in Section 5. Clearly, 

K~ <_ CK(Q). Now, summing up the dimensions of [K, z], K0 and K~, we obtain 

that dim K _> 2048 + 2300 + 23 = 4371. Since also dim K <_ 4371, we finally 

establish dim K = 4371. 

Continuing the above, suppose K is not irreducible with respect to the action of 

G. From the decomposition K = [K, z] ~ K0 ~ K~ we see that, as a G-module, K 

has no trivial composition factors. If U is a faithful G-module then, substituting 

K by U in the previous paragraph, we obtain at least that dim U ~ 2048 + 2300. 

So a reducible G-module without trivial composition factors must has dimension 

at least twice of the given sum. Therefore, K is irreducible. 

Now let us turn to (b). Let H,  Q, x and ~ be as above. Le t /~  be the stabilizer of 

in 6 ,  and Q = O2(/~). Clearly, the natural homolnorphism G --~ G maps/~r and 

(~ onto H and Q, respectively. It follows fi'om Lemma 4.1(2) that the extension 

I:I = K~:.H is non-split. On the other hand, we proved above that CK(Q) = K~: 

and h e n c e / t  -- N~(Q). The latter group splits over N6(Q) O K = CK(Q) = K~ 

whenever G splits over K. This gives (b), and the proof of Main Theorem is 

complete. | 

One might observe that 4371, i.e. the dimension of K,  coincides with the 
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minimal degree of a non-trivial irreducible representation of G = BM over C. So  

the following question seems to be quite natural: Is K isomorphic to the module 

obtained by taking modulo 3 the rational-valued representation of G of degree 

43717 We conclude this paper with rather informal comments demonstrating 

that this question must be aalswered affirmatively. Namely, we claim that  G has 

exactly one irreducible module of degree 4371 over GF(3). 

Let U be such a module. As above we can obtain a decomposition U = 

U~(x) ~ U2(z) ~ U3(z) with respect to the action of H = Gz. Here Ui(z) has 

dimension 2048, 2300, 23 for i = 1,2, 3, respectively. Let y E res(z) 2, let N be 

the stabilizer of y in G, and R = O~(N). Then R t3 Q covers a hyperplane in 

Q/(z), belonging to the H/Q-orbit of length 46575. In particular, R fixes no 

non-trivial vector in U~(z) and U2(z). Consider now the action of R on U3(z). 
The image of N (3 H in H/Q ~- Cos is a maximal subgroup 21° : Aut M22. It 

is easy to show that U3(x) splits as 1+22 under the action of N N/'/', and to 

determine the character of U~(z) on the involutions of Co2. Finally it brings us 

to the following conclusion: for every ~/ E ~2 the subspace U~ = Ou(O2(Gy)) 
has dimension 1; an element of Gy inverts Uy if and only if it induces an outer 

automorphism on the section M22 of Gy. 

Take now a symplectic subgeometry S passing through z and y. Let D be 

the stabilizer of S in G. The image of D N H in H/Q is a maximal subgroup 

21+S.Sps(2). Considering its action on Uz(z) we establish the decomposition 

7+16 for U3(z). As a consequence we obtain that the 63 subspaces Uu,// E 

tess(z) 2, span the 7-dimensional component, which is simply Cu~(~)(O2(D)). 
Now, according to [12], the group Sp6(2) has exactly 1 non-trivial 7-dimensional 

module in characteristic 3, namely, the ET-lattice taken modulo 3. By inspecting 

the latter module we establish that Sp~(2), acting on the set of 1-spaces of this 

module, has exactly one orbit of length 63. Consequently, the 7-dimensional 

module has a unique presentation in terms of its subspaces U~, y E ress(z) z. It 

follows that the module U is a factormodule of a unique maximal (or rather, 

universal) G-module b" over GF(3) such that 

(1) ~r is spanned by 1-spaces U~, where y E ~2, Oy is invariant under 

the action of the stabilizer N of y in G, and an element of N inverts U~ 

whenever it induces an outer automorphism on the section M22 of N; 

(2) the subspace (U~ly E ress(z) 2) has dimension 7 for every z E ~a and 

every symplectic subgeometry S on z. 
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Now, the property (2) can be used to prove that the subspace ~r z = (~r u lY E 

rest(x) 2) has dimension 23, while the subsl)ace Us = (Lry [y E S 2) has dimension 

35 and, moreover, has the property indicated in Lemma 5.1. Essentially, the 

proof of the first statement was given in [15], while the second statement was 

proved in [10]. Since the arguments in Section 5 were based only on Lemma 5.1 

and Lemma 5.2(1), those arguments can be applied to ~r to establish finally that 

dim U _< 4371, and, consequently, U ~ U = K. 
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